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ABSTRACT

In this article we investigate the two-dimensional incompressible rotating and stratified, just rotating,
just stratified Euler equations, comparing with each other and with the normal Euler equations with
the self-similar Ansatz. The motivation of our study is the following the presented rotating stratified
fluid equations can be interpreted as a well-established starting point of various more complex and
more realistic meteorologic, oceanographic or geographic models. We present analytic solutions
for all four models for density, pressure and velocity fields, most of them are some kind of power-law
type of functions. In general the presented solutions have a rich mathematical structure. Some
solutions show nonphysical explosive properties others, however are physically acceptable and
have finite numerical values with power law decays. For a better transparency we present some figs
for the most complicated velocity and pressure fields. To our knowledge there are no such analytic
results available in the literature till today. Our results may attract attention in various scientific fields.
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1 INTRODUCTION

There is no need to prove the evidence
that geophysics, oceanography and meteorology
have crucial importance for human society and
civilization. Part of it is the special interest in
science. Overwhelm problems in meteorology
and oceanography are hydrodynamic in origin.
This statement is partially true for geophysics
as well. On the surface of Earth due to
axial rotation and the additional gravity the
question of stratified flows play an important
role. Various hydrodynamic models of such kind
for meteorology, oceanography and geophysics
can be found in numerous monographs we just
mention three of them [1, 2, 3] which are quite
general. Later in this study we gave additional
literature which are more specific for stratified of
for rotating fluids.

Unlike the large number of highly-technical
and numerical studies we investigate the time-
dependent disperse self-similar solutions [4,
5] (not the blow-up type) of these kind of
multidimensional Euler-type equations. The form
of the original one-dimensional Ansatz reads as
follows

V px, tq “ t´αfpx{tβq “ t´αfpηq, (1)

where V px, tq is the dynamical variable, fpηq

is the shape function with the reduced variable
η and α, β are the self-similar exponents.
Usually α, β ą 0 present physically relevant
power-law decaying physical solutions of the
problem. This transformation is based on the
assumption that a self-similar solution exists, i.e.,
every physical parameter preserves its shape
during the expansion. Self-similar solutions
usually describe the asymptotic behavior of an
unbounded or a far-field problem; the time t
and the space coordinate x appear only in the
combination of η “ x{tβ . It means that the
existence of self-similar variables implies the
lack of characteristic lengths and times. The
geometrical and physical interpretations of this
Ansatz were exhaustively explained in all our
former studies [6, 7, 8], therefore we skip it here.

The aim of our analytic solutions is twofold.
Firstly, it helps to analyze and understand
the asymptotic properties of the solutions for
asymptotic times and distances. This is a
pure academic interest. Secondly, our clear-
cut solutions may help to test highly complex
numerical program packages which are used
to forecast in meteorology, oceanography or
geophysics. Our solutions can be taken as
boundary conditions for a given time point then
the propagation process of such complex models
can be compared to our solutions at later times.

This study is part of our long-time program
which systematically goes over fundamental
hydrodynamic systems. Till now we published
about half a dozen papers [6, 7] and a book
chapter [8] in this field. To the best of our
knowledge, there are no such time-dependent
self-similar solutions known, presented and
analyzed in the scientific literature for these
systems. The structure of this paper is
the following: to give a broader overview
we investigate and compare the solutions of
two dimensional rotating and stratified Euler
equations with just stratified, just rotating and
pure Euler equations. So four different flow
systems will be discussed, We already published
studies with the similar logic where several cases
were investigated like the surface growth KPZ
equation with numerous different noise terms
[9] or the compressible one dimensional Euler
equations where various equation-of-states were
applied [10]. In the next chapter we present the
investigated four systems one after another with
the analytic solutions and with the corresponding
parameter study. The paper ends with a
summary where we overview our results and give
an outlook to the reader of future generalizations
or open problems.

2 THEORY

To have a complex analysis for all four
cases we present the corresponding original
partial differential equation (PDE) systems,
the applied Ansatz with the obtained self-
similar exponents, the obtained coupled ordinary
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differential equation (ODE) system and the
solutions for the dynamical variables, the velocity
and pressure fields (in two cases even for the
densities). For a better transparency and for
a clearer understanding we present figs for
the most complicated solutions. These non-
trivial shape functions and the corresponding
final dynamical variables (velocity and pressure)
are plotted and analyzed. We think that it is
unnecessary to plot all shape functions and all
dynamical variables for all four models for trivial
solutions.

2.1 The Rotating and Stratified
System

We start our study with the most complex
flow where both rotation and stratification are
present. The stability and turbulence of such
systems were extensively studied by Koba [11]
and Davidson [12]. The dynamics of the
vortex structures in rotating stratified flows were
investigated by Sokolovskiy [13]. Regarding
the governing equations we consider the mass
conservation law for an incompressible fluid.
The dynamics of the flow is determined by the
Euler’s momentum equation, where a possible
rotation of the system is also taken into account.
According to the book of Dolzhansky [2] the
rotating stratified fluid equations in two Cartesian
dimensions in vectorial notation read as follows:

∇v “ 0,

ρt ` pv∇qρ “ 0,

vt ` pv∇qv ` 2Ω0 ˆ v “ ´
∇p

ρ0
`

G

ρ0
ρ, (2)

where v, ρ, p,Ω0, G denote respectively the two-
dimensional velocity field, density, pressure,
angular velocity and an external force (now
gravitation) of the investigated fluid. In the
following ρ0, is one physical parameter of the
flow. For a better overview we use the coordinate
notation vpx, y, tq “ upx, y, tq, vpx, y, tq for the
velocity and ppx, y, tq for the scalar pressure
field. To have a trivial rotation contribution we
consider the Ω0 “ p0, 0,Ωz

0px, y, tqq angular
velocity vector. The direct form, (coordinate form)

of the equations are:

ux ` vy “ 0,

ρt ` uρx ` vρy “ 0,

ut ` uux ` vuy ´ 2vΩ0 “ ´
px
ρ0

,

vt ` uvx ` vvy ` 2uΩ0 “ ´
py
ρ0

`
G

ρ0
ρ, (3)

where the subscripts mean partial derivations
with respect to time and spatial coordinates. (For
the following three models we skip the vectorial
form, and just write out all the coordinates. We
think that to perform direct calculations this is the
proper form of the equations and the reader can
see how the derivation act on various functions.)
Therefore, this is our starting point. In this
study – in all four models – we consider the
Euler equation only and skip additional viscous
terms. Such an investigation could be the topic
of our next investigation. We think that if all the
usual Newtonian viscosity term are added, the
same analysis can be done and analytic solutions
(probably containing Kummer special functions)
can be derived as well. We also think that
exploding type of solutions (which are not finite at
infinite time or space coordinate) will be partially
missing, of course the effect of the rotation is
now unknown for us. Therefore the application of
the present results to reality is strongly limited to
cases where viscosity is negligible, one example
could be the high speed flow of air.

We have to define our self-similar Ansatz for all
four dynamical variables. We consider the form
of:

ρpx, y, tq “ t´αfpηq, upx, y, tq “ t´δgpηq,

vpx, y, tq “ t´ϵhpηq, ppx, y, tq “ t´γipηq, (4)

with the new variable of η “ x`y
tβ

. All
the exponents α, β, γ, δ, ϵ, are real numbers.
(Solutions with integer exponents are called
self-similar solutions of the first kind, non-
integer exponents generate self-similar solutions
which are of called second kind.) The shape
functions f, g, h, i could be any continuous
functions with existing first derivatives and will
be evaluated later on. The logic, the physical
and the geometrical interpretation of the Ansatz
were exhaustively analyzed in all our former
publications [6, 7, 8, 9, 10] therefore we neglect it
here.
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To derive a consistent coupled ODE system for the shape functions the exponents have to fulfill the
next constraints

α “ 3{2, β “ δ “ ϵ “ 1{2, γ “ 1. (5)

Note, that all exponents have a fixed numerical value, which clearly defines the solutions. Each
exponent is positive so the solutions are expected to be physical (which mean that all will have power
law decays at large times). It is important to emphasize, that only the Ωz

0 “ ω0{t angular velocity
function (which is trivial from dimensional consideration) leads to the following clean-cut ordinary
differential equation (ODE) system

f 1
` g1

“ 0,

´
3

2
f ´

1

2
ηf 1

` gf 1
` hf 1

“ 0,

´
1

2
g ´

1

2
ηg1

` gg1
` hg1

´ 2hω0 “ ´
i1

ρ0
,

´
1

2
h ´

1

2
ηh1

` gh1
` hh1

` 2gω0 “ ´
i1

ρ0
`

G

ρ0
f. (6)

At first sight we may be scared from the coupled non-linearity of the ODE system, these kind of ODE
systems are not usual. From the first (continuity) equation we automatically get f ` g “ c0, where c0
is proportional with the constant mass flow rate. Implicitly, larger c0 means larger velocities. From the
first and second Eq. of (6) the ODE for the density shape function can be easily derived

f 1
´

c0 ´
η

2

¯

´
3f

2
“ 0. (7)

The solution is almost trivial
f “

c1
p2c0 ´ ηq3

, (8)

where c1 stands for the usual integration constant. The function is a shifted third order hyperbola with
a singularity at η “ 2c0 for η ą 0 it is positive and strictly monotone decreases. The density has a
power-law decay for large times which is physically desirable

ρpx, y, tq “
1

t
3
2

¨
c1

ˆ

2c0 ´ x`y

t
1
2

˙3 »
1

px ` yq3
. (9)

Extracting the fourth equation from the third one in 6 the ODE for the shape function of the velocity
component v can be easily given:

h1
pη ´ 2c0q ` h ´ c0

ˆ

2ω0 `
1

2

˙

`
Gf

ρ0
“ 0, (10)

with the solution of
h “

ηp´c0 ´ 4c0ω0q

2c0 ´ η
´

Gc1
ρ0pη ´ 2c0q3

`
c2

2c0 ´ η
. (11)

The function has a singularity at η “ 2c and it it strictly monotone growing for all positive ηs where
η ą 2c0. The solution is the sum of a shifted first and third order hyperbola. All the parameters
are responsible for the scaling and the shift of the singularity. It is straightforward to show that the
asymptotic behavior of the velocity field is

vpx, y, tq “ t´ϵhpηq » t´1{2

¨

˚

˝

Gc1

ρ0
”

p
px`yq

t1{2 ´ 2c0
ı3

˛

‹

‚

»
t

px ` yq3
, (12)

which makes it a physically acceptable solution.
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Adding the last two equations of Eq. (6) the ODE of the pressure shape function can be derived

´
2ipηq1

ρ0
`

Gfpηq

ρ0
` 4ω0hpηq ´ c0

ˆ

ω0 `
1

2

˙

“ 0. (13)

The solution can be easily evaluated with quadrature

i “ 2ω0lnpη ´ 2c0qpc2 ´ 4ω0c0 ´ ρ0c
2
0q ` Gc1

2pη´2c0q2

`

1
2

´ ω0

˘

`

η
`

1
2
ω0ρ0c0 ´ 4ρ0ω

2
0c0 ´ c0ρ0

4

˘

` c3. (14)

The asymptotic of the pressure as field variable is:

ppx, y, tq “ t´γipηq » t´1 Gc1

2
”

x`y

t1{2 ´ 2c0
ı2

ˆ

1

2
´ ω0

˙

»
1

px ` yq2
. (15)

Fig. 1. shows the pressure shape function for two different angular velocities giving qualitatively
different curves. The integration constants c0, c1, c2, c3 play no relevant role just shift and scale the
results. The key parameter is the angular velocity with the turning point of ω “ 0.5. In the case of
ω0 ą 0.5 there is a global maximum of the pressure. Larger ω means quicker decay. Larger densities
makes quicker pressure decays as well.

To have a feeling about the general properties of the pressure, Fig. (2-3) present the ten-based
logarithm of the solution for two different angular velocities. In both cases the pressure functions
have clear asymptotic values.

Fig. 1. Graphs of two different pressure shape functions Eq. (14) where the common
parameters are G “ 10, ρ0 “ 1, c0 “ 1, c1 “ 3.25, c2 “ ´3.1, c3 “ 15. The solid and dashed

curves are for ω0 “ 0.135 and ω0 “ 75, respectively

Fig. 2. The ten-based logarithm of the pressure Logpppx, y “ 0, tqq for ω0 “ 0.135 angular
velocity, all other parameters are given above
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Barna and Mátyás; AJR2P, 4(1): 14-26, 2021; Article no.AJR2P.64107

Fig. 3. The ten-based logarithm of the pressure Logpppx, y “ 0, tqq for ω0 “ 0.75 angular
velocity, all other parameters are given above

2.2 The stratified system without rotation
Now we consider the Ω “ 0 special case. The stratification and the change of density with the altitude
has its importance in the Earth science. Turbulence issues in stratified planetary boundary layers is
studied by Ansorge [14]. Numerous general hydrodynamic questions in environmental stratified flows
can be found in various textbooks [15, 16, 17, 18, 19]. The vortex structures in stratified fluids was
investigated by Voropayev and Afanasyev [20]. Additional wave propagation issues were extensively
described in [21, 22]. In 1975 Ono [23] presented algebraic solitary wave solutions for stratified fluids.
An enhanced decrease of density of air with the altitude may lead to static stability which usually
yields an increase of concentration of certain pollutants [24, 25, 26]. The effect of temperature in the
hydrodynamics of stratified flows may lead to specific convection phenomena even on small scales
[27]. Interesting aspects were investigated and discussed related to sedimentation in stratified flows
by [28].

Our reduced PDE system is now:

ux ` vy “ 0,

ρt ` uρx ` vρy “ 0,

ut ` uux ` vuy “ ´
px
ρ0

,

vt ` uvx ` vvy “ ´
py
ρ0

`
G

ρ0
ρ, (16)

where subscripts means partial derivatives with respect to time and both coordinates x and y. The
applied Ansatz is the following:

ρpx, y, tq “ t´αfpηq, upx, y, tq “ t´δgpηq,

vpx, y, tq “ t´ϵhpηq, ppx, y, tq “ t´γipηq, (17)

The corresponding ODE system reads as:

f 1
` g1

“ 0,

´p2 ´ βqf ´ βηf 1
` gf 1

` hf 1
“ 0,

´p1 ´ βqg ´ βηg1
` gg1

` hg1
“ ´

i1

ρ0
,

´p1 ´ βqh ´ βηh1
` gh1

` hh1
“ ´

i1

ρ0
`

G

ρ0
f. (18)

The slightly modified corresponding ODE system due to an undefined free self-similar exponent has
a much larger degree of freedom. So, in this sense all the exponents can be expressed with a fixed
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one (we may say with β)

α “ 2 ´ β, δ “ ϵ “ 1 ´ β, γ “ 2p1 ´ βq. (19)

(We use β as free parameter because it describes the common ”spreading” property of all the
dynamical variables, and now all ”decay” parameters are free from each other. So the ”decays” of all
variables can be studied independently.) The three ODEs for the shape functions can be determined
with the logic mentioned above,

f 1
pc0 ´ βηq ´ fp2 ´ βq “ 0, (20)

2h1
pβη ´ c0q ´ p1 ´ βqc0 `

Gf

ρ0
“ 0, (21)

´
2i1

ρ0
`

Gf

ρ0
` p1 ´ βqc0 “ 0. (22)

All the solutions can be derived with quadrature

f “ c1pc0 ´ βηq
β´2
β , (23)

h “ ´
Gc1pc0 ´ βηq

β´2
β

2ρ0pβ ´ 2q
`

c0ln
´

rc0 ´ βηs
β´2
β

¯

2pβ ´ 2q
p1 ´ βq ` c2, (24)

i “ ´
c1Gpc0 ´ βηq

2pβ´1q
2

4pβ ´ 1q
`

p1 ´ βqc0ρ0
2

η ` c3. (25)

Note, that due to the free running self-similar exponent (now β) we got different kind of power-low
dependent solutions, therefore this model has the richest mathematical structure. To show the
features of (23 - 25) we present and discuss some solutions with various βs. Fig. 4. shows (23)
for six different exponents. Note, that we can get back all the usual power law functions, constant
hyperbola and parabola as well. Fig. 5. presents the hpηq shape functions. We present 5 different
kind of solutions, for reasonable βs. Fig. 6. shows the shape functions for ipηq, there are 7 qualitative
different functions exist as solutions. (We say that the typical exponent lies in the r´4..4s range, for
lot of physical systems this is restricted to the r´2..2s interval.)

Our decade long experience shows that mainly the solutions with all positive exponents are physically
relevant describing power-law dependent solutions. (Solutions with negative exponents usually have
exploding properties at large times and space coordinates which violates mass, momenta or energy
conservation.) Fig. (7 - 9) present the tenth-based logarithm of the density, velocity and pressure for
the common β “ 1{2 value. Note, that all dynamical variables have a physically reasonable power-law
decay for infinite times.

2.3 The Rotating System without Stratification
Rotating fluids are also relevant for science and engineering therefore the corresponding literature
again enormous, without completeness we mention some general work of them [29, 30, 31, 32,
33, 34, 35]. Additional convection problems in rotating fluids were directly analyzed by Boubnov
and Golitsyn [36]. Vadász [37] investigated the heat transfer of rotating porous fluids. A detailed
mathematical analysis of fluids on rotating spheres is given by Skiba [38]. To investigate this case the
complete second equation of (2) has to be neglected having the PDE system in the form of:

ux ` vy “ 0,

ut ` uux ` vuy ´ 2vω0 “ ´
px
ρ0

,

vt ` uvx ` vvy ` 2uω0 “ ´
py
ρ0

` G. (26)
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Fig. 4. The graphs of Eq. (23) the common parameters are c0 “ 4, c1 “ 1.2. The black solid,
dashed, dotted and dash-dotted, the green solid and green dashed curves are for

β “ ´4,´2,´1, 1, 2, 4, respectively

Fig. 5. The graphs of Eq. (24) the common parameters are
G “ 10, ρ0 “ 1, c0 “ 3, c1 “ 1.2, c2 “ 1.2. The black solid, dashed, dotted, dash-dotted and

green solid curves are for β “ ´2,´1, 1, 1.5, 2.5, respectively

Fig. 6. The graphs of Eq. (25) the common parameters are the same as above with c3 “ 0.
The black solid, dashed, dotted, dash-dotted and the green solid and green dashed and

green dash-dotted curves are for β “ ´3,´2,´0.5, 0.5, 1.5, 2, 2.5, respectively
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Fig. 7. The graph of the ten-based logarithm of the density function ρpx, y “ 0, tq for β “ 1{2

Fig. 8. The graph of the ten-based logarithm of the velocity function vpx, y “ 0, tq for β “ 1{2

Fig. 9. The graph of the ten-based logarithm of the pressure function ppx, y “ 0, tq for β “ 1{2

So the number of the four unknowns is now reduced to three, namely to the velocity components u, v
and to the pressure p. To avoid contradiction among the exponents it is important to emphasize, that
again only for Ωz

0 “ ω0{t angular velocity function we get a clean-cut ODE system. The trial functions
for the solutions now read

upx, y, tq “ t´δgpηq, vpx, y, tq “ t´ϵhpηq, ppx, y, tq “ t´γipηq. (27)

The relations among the exponents are the following:

β “ 2, δ “ ϵ “ ´1 γ “ ´2. (28)
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Note, all the fixed exponents. The coupled ODE system is

g1
` h1

“ 0,

g ´ 2ηg1
` gg1

` hg1
´ 2hω0 “ ´

i1

ρ0
,

h ´ 2ηh1
` gh1

` hh1
` 2gω0 “ ´

i1

ρ0
` G. (29)

The ODEs for one velocity field component and for the pressure field are:

2h1
p2η ´ c0q ´ 2h ´ c0p2ω0 ´ 1q ` G “ 0, (30)

´
2i1

ρ0
` 4ω0hG ´ c0p2ω0 ` 1q ` G “ 0. (31)

There is no coupling between the variables. The corresponding solutions are

h “ c1
a

c0 ´ 2η `
G

2
´

c0p2ω0 ´ 1q

2
, (32)

i “
1

2
ρ0

ˆ

´
4

3
ω0c1rc0 ´ 2ηs

3
2 ` ηr´2ω0c0t2ω0 ´ 1u ` 2ω0G ´ c0t2ω0 ` 1u ` Gs

˙

` c2. (33)

The shape function of the velocity is a shifted square root function with negative argument. Note,
the extra last positive shift term compared to the simple Euler case Eq. (42) which is proportional to
the angular velocity of the rotation ω0. The pressure shape function is a sum of a linear and an η3{2

power law function with some shifts. Note, that the rotation is responsible to the first power law term,

vpx, y, tq “ t´ϵhpηq “ t

˜

c1

c

c0 ´
2px ` yq

t2
`

c0p1 ´ 2ω0q ` G

2

¸

»
?
x ` y ` t

ppx, y, tq “ t´γipηq “

“
t2ρ0
2

˜

´
4

3
ω0c1

„

c0 ´ 2
px ` yq

t2

ȷ 3
2

`
px ` yq

t2

”

C̃
ı

` c2,

¸

» px ` yq
3{2

{t ` x ` y (34)

where
C̃ “ ´2ω0c0t2ω0 ´ 1u ` 2ω0G ´ c0t2ω0 ` 1u ` G. (35)

The derived solutions are quite simple therefore we skip to present additional figs. At this point we
have to make a comment. Parallel to this study we investigate an astrophysical relevant fictive media,
the spherical symmetric self-gravitating compressible dark fluid with the same method [39]. We plan
to complete that model with additional rotation therefore the obtained results presented in Eq. (34)
are important for comparison.

2.4 No Rotation and No Stratification
This is the simplest system among the investigated four cases and this is the equation for the two
dimensional incompressible ideal fluid as well. For completeness the starting PDE system reads

ux ` vy “ 0,

ut ` uux ` vuy “ ´
px
ρ0

,

vt ` uvx ` vvy “ ´
py
ρ0

`
ρ

ρ0
G. (36)
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We note, that with the usual Newtonian additional viscous term and with the additional third Cartesian
coordinate z, the same analysis is possible (and was performed in our first paper) resulting Kummer
functions with quadratic arguments [40].

The trial functions for the solutions are not changed from the previous case

upx, y, tq “ t´δgpηq, vpx, y, tq “ t´ϵhpηq, ppx, y, tq “ t´γipηq. (37)

The self-similar exponents remained the same too:

β “ 2, δ “ ϵ “ ´1 γ “ ´2. (38)

The ODE system is however a bit simpler:

g1
` h1

“ 0,

g ´ 2ηg1
` gg1

` hg1
“ ´

i1

ρ0
,

h ´ 2ηh1
` gh1

` hh1
“ ´

i1

ρ0
` G. (39)

The decoupled ODEs for the velocity and for the pressure are also simpler, (note the missing terms
with ω0)

2h1
p2η ´ c0q ´ 2h ` c0 ` G “ 0, (40)

´
2i1

ρ0
´ c0 ` G “ 0. (41)

The analytic solutions, after all, are almost trivial and read

h “ c1
a

c0 ´ 2η `
c0 ` G

2
, , (42)

i “
pG ´ c0qρ0η

2
` c2.. (43)

The velocity shape function is a square root function with shifted negative arguments which means
that the function domain becomes negative. The shape function of the pressure is a simple linear
function. Note the difference to Eq. (33) is due to the rotation ω0. For completeness the final field
variables are

vpx, y, tq “ t´ϵhpηq “ t

˜

c1

c

c0 ´
2px ` yq

t2
`

c0 ` G

2

¸

»
?
x ` y ` t, (44)

ppx, y, tq “ t´γipηq “ t2
ˆ

pG ´ c0qρ0
2

px ` yq

t2
` c2

˙

» x ` x ` t2. (45)

Notice, that both dynamical variable have no decay property to large times, therefore we consider
them nonphysical and skip to present additional figs. From physical considerations we may
calculate the total kinetic energy term which is proportional to the volume integral of
ş

V
ρ0
2

rupx, y, tq2 ` vpx, y, tq2sdxdy this quantity should however has a time decay at infinite times
(where V means the volume of the dynamics).

3 SUMMARY

We investigated the two-dimensional
incompressible rotating and stratified, just

rotating, just stratified Euler equations by
comparing them to each other and with the
normal Euler equations applying the self-similar
Ansatz. To emphasize the scientific relevance of
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the first three of these equations we mentioned
numerous textbooks and monographs which
were written in the recent decade. There
are at least three scientific disciplines exist
– meteorology, oceanography and geophysics
– where these kind of equation are the very
basic starting points of more sophisticated
and complex numerical models and program
packages. We found analytic solutions for all
dynamical variables of all four models. Every
solution can be expressed with various power-
law type functions.

The solutions of the rotating stratified and
the stratified flows are much more complex
than the last two one, therefore we presented
additional figs to enlighten the details. Overall
the physically relevant, power-law time decaying
solutions were emphasized. We think that due
to the lack of higher order viscous terms in the
Euler equations all solutions are quite simple
contains no additional internal finer structure e.g.
some waves or oscillations. We mentioned that
additional viscous terms will effect second order
ODE system with solutions of special functions
(like Kummer or Whittaker functions) which could
have additional oscillations and strong decay
properties. The present study is an organic part
of our decade long scientific program in which
we investigate numerous basic hydrodynamic
systems one after another giving closed solutions
with in-depth parameter studies and analysis.
We would like to publish this manuscript just as
a precursor of planned later studies with more
complex materials of viscous fluids like [41].

4 CONCLUSION

We investigated four different rotating and/or
stratified ideal fluid equations with the self-similar
Ansatz and proved that all models have power-
law type of solutions for the velocity, density and
pressure fields.
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[25] Szép R, Mátyás L. Carpath J. Earth. Env.
Sci. 2014;9:241.
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